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Resonant scattering of nonlinear Schrodinger solitons from potential wells
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The interaction of nonlinear Schrddinger solitons with extended inhomogeneities, modeled by potential
wells with different shapes, is investigated numerically. For fixed initial velocities below the transmission
threshold, the scattering pattern as a function of the width of the well exhibits periodically repeating regions of
trapping, transmission, and reflection. The observed effects are associated with excitation and a following
resonant deexcitatiofin the cases of escapef shape oscillations of the solitons at the well boundaries. The
analysis of the oscillations indicates that they are due to interference of the solitons with emitted dispersive
waves.
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Self-localized nonlinear wavegsolitong have been stud- linear SchrddingefNLS) solitons from point defects has
ied in many areas of physics, including optics, solid statepeen studied if11-15 involving a variety of nonresonant
molecular, plasma, elementary particles, etc. Within inteoutcomes.
grable models, solitons exhibit remarkable stability; they A problem of considerable theoretical and practical im-
propagate with constant velocities and shapes and emerg®rtance is the interaction of solitons with extended inhomo-
from collisions unchanged except for phase and space shiftgeneities16—1§. Nonclassical behavior in the scattering of
Real physical systems are usually described by nonintegrabigpological solitons from potential wells has been obtained
equations or such containing nonintegrable perturbationg, 119-23, including a rich outcome structures of trapping,
This leads to inelastic soliton interactions with a variety of.ansmission and reflection as a function of the initial veloc-

outcomes. As solitons provide an important mechanism fofy,, |, the present work we investigate in detail the dynamics
energy and information transport in nonlinear systems, suc f NLS solitons impinging on potential wells with variable

interactions have attracted considerable attentgee, i.e., : L o . )
Ref. [1] for a review of earlier works on soliton dynamics in shapes. For f"?eo'. initial vglocmes slightly be_low the thresh
old for transmission, the increase of the width of the well

nearly integrable systemdnvestigations have been focused ields alternating redions of capture and transmission. and
on collisions between solitons in nonintegrable models and' . Ing regi captul Ission, ’
ccasionally, narrow reflection windows. The regions of

interactions of solitons with defects and inhomogeneities. I

both cases, due to the inelasticity of the interactions, soliton§@nsmission, capture, and reflection follow a remarkable pe-
can change their velocities, break into a number of localizediodicity. The observed effects are explained by excitation

and dispersive waves, and/or be trapped into bound states. #nd a following resonant deexcitation of amplitughape

addition, fascinating resonance phenomena have been oBscillations of the soliton at the boundaries of the well.
served. The numerical simulations are based on the discrete non-

Resonance effects in kink-antikink collisions have beerlinear Schrodinger equation, which describes the dynamics
studied numerically in some nonintegrable equations includef nonlinear Bose-type excitations in atomic and molecular
ing ¢* double and modified sine-Gordon, and othis4). chains. The potential wells are modeled Hyconsecutive
For initial velocities below the threshold for trapping, a se-defects, which change the local energy
quence of narrow regions of reflection have been obtained.

These reflection windows have been explained by a “two- i% = = (1 + apog — 2ap) — 2| ?an +dpa, (1)
bounce” resonance mechanism involving excitation of an in- a

ternal shape mode during the first collision, temporal trap-

ping of the solitons due to loss of kinetic energy, deexcitation d,#0forl1<n<N, d,=0 otherwise.

of the shape mode during the secamackward collision, In the continuum limit,(1) turns into a perturbed NLS
and escape of the kinks to infinityeflectior). The resonance equation

condition requires that the time between the two collisions is )
commensurate with the period of the shape mode. Fine three- da  Fa > _
|—+—2+2|a| a=dX)a. (2)
and four-bounce resonance structures have also been ob- gt ox
tained[5]. Resonances in the collision of discrete NLS soli-

tons have been investigated 8], and in the case of vector ~ FOr d(X)=0, Eq.(2) possesses a fundamental bright soli-

NLS solitons-in[7]. ton solution
Similar effects have been observed in the interactions of 1 X=0t\ i 02 1
solitons with localized impuritie§8—10. It has been shown a(x,t) = [ sech =, g0z gy = RS 3

in particular that kinks can be reflected by an attractive im-

purity via a “two-bounce” resonance mechanism involvingwhereL andv are the width and the velocity, respectively, of
the excitation and deexcitation of a localized impurity modeshe soliton.

[9], or impurity and a shape mod§sQ]. Scattering of non- It is known that ford,=0, Eq.(1) is a nonintegrable dis-
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crete version of the completely integrable continuum NLS
equation. For sufficiently wide solitogsompared to the lat- || @)
tice constant however, the discreteness-induced effects are
negligible and the solutiorg3) is stable on ideal discrete
lattices. We checked this numerically for solitons with
=4 and long time scales. So the soluti@) with L=5.75
was input as the initial condition in the simulations, placed
50 sites away from the defect region to avoid radiation decay t
due to overlapping of the soliton’s tail with the potential
well. A predictor-corrector methofP4] was employed, peri-
odic boundary conditions and chains much longer than the 4000 2o ° 120
defect region in order to eliminate boundary effects. The ac-
curacy of the calculations was controlled through the conser-
vation of the norm(number of particles which was better
than 10° for the whole course of the simulations.

The total energy associated with the soluti@ on an
ideal lattice is

=

where the first term describes the kinetic energy of the free

2000 -

(b)

da |2 v? 2
x _|a|4)dX:Z_EEEk_EnIa (4) t

quasiparticles and the second term describes the nonlinear “000 § 180
interaction energy associated with the soliton. The scattering "
pattern depends, in general, on the interplay between these
two energies and the energy of interaction with the defects lot, | (©
Eq

Ed:j d(x)|a|?dx. (5)

The effects studied below correspond to the case of “slow
solitons” with kinetic energy much smaller than the nonlin-
ear energyE,<E,. The large nonlinear energy is necessary
in order to preserve the integrity of the soliton during the
scattering. N

Scattering of NLS solitons from single-point defects has ) ) )
been studied in detail ifil1,12,14,1% The corresponding FIG. 1. Interaction of a solitoilL=5.75,v=0.05 with several

: ; ; ; . consecutive impurities with a fixed summary strengih.N=1, d
interaction energy when the soliton is on top of the defect '52—0.035;(13) N=2, d=—0.0175; andc) N=3, d=—0.0117.(a) and

-180

® d (b) correspond to capture ar{d) to transmission. The defects are
Eq= df 8(x)|a?dx= 2 (6)  centered ah=0.

) . o This turns out to be true only for very small kinetic energies,
When E, > |E|, the solitons are not mflgenced significantly \yhen the soliton always gets trapped. For higher energies
by the defect, and foE,<|Ey|, the solitons are reflected (Fig. 1), the delocalization of the defect can change the evo-
even by an attractive defect. The possible outcomes in thrition from capture to transmissidffrig. 1(c)]. It is worth
case of slow solitons and moderate defect strenglys noting that the more localized the defect is, the stronger the
~|Eq|) are transmission or capture. No resonance reflectionadiation accompanying the interaction.
windows have been obtained. The focus of the present study lies in the interaction of

A natural question arises as to what happens when thdLS solitons with potential wells with variable width. The

defect spreads over several lattice sites. The energy of inteiaput velocity and the depth of the potential were chosen
action withN consecutive defects when the soliton is in thewithin ranges that permit a variety of scattering patterns.

middle of the defect region is First we studied rectangular potential wells modeledNby
N2 C(_)nsecutive defects With equal strengtl=-0.007. The
E.= df |a2dx= 2_d tam_(ﬁ) @) width of the wells was increased step by step to values much
d N2 L 2L/ larger than this of the soliton. The simulations show that for

initial velocitiesv <0.04 the solitons get trapped inside the
One can expect, that for a small number of defets, well, and forv>0.06 they pass through it and escape to
<L), the evolution should be similar to this of a soliton infinity for any values ofN. For initial velocities in the in-
interacting with a single defect witN-times greater strength. termediate region, the scattering pattern as a function of the
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0.05 4 the soliton crosses the potential well, stays for a long time at
o VTN TN the second boundary, turns back, and leaves the defect region
e \J\—/W—/\—/{ through the first boundary. It is clearly seen that amplitude
® 005 2 (shape oscillations are excited when the soliton enters the
o \W potential well and persist while the soliton is inside the well.
N~~~ Whenever the soliton leaves the defect region, the shape os-
0 % 0 0 cillations are almost totally extinguished. This suggests that
N the shape oscillations are the cause of the periodic patterns

FIG. 2. Final soliton velocity; as a function of the numbe observgd on Fig. 2, a.nd we looked for a correlation betwgen
of defects withd=-0.007 for different initial velocities. Curves 1 the period of the oscillations and the width of the potential
to 4 correspond toy=0.0440, 0.0476, 0.0502, and 0.0580, Well: _ _ _
respectively. The scattering patterns shown on Fig. 2 have a period of
35(curve ) to 36(curve 9 lattice sites. The spatial period of
the shape oscillations is not so well defined due to the vari-

transmission and capture, and occasionally, at the boundarié‘?l.e velocity of t_he _sohton inside the well. The t_emporz_:ll
between them, narrow reflection windows. This is shown inperIOd of the oscillations, how_ever, can b_e determined W.'th
Fig. 2 where we have plotted the final velocity of the soliton g;?gtoicf:wa%y’sﬁgd sthtia??:ajégdZ(?gaklr?isct{frr:Qtee Z?Theé'cal
as a function of the width of the well for different values of tial I'g.d f thW " It' 5= ' b btl ined f th
the initial velocity. The horizontal parts with zero final ve- spatial period of the oscillations can be obtained Irom the

locity correspond to the trapping regions. The regions With:‘:)llOV\{{lnr?ticcl)nildreratiIORS:anh?rr:]tf:jei:flltkci): Itsi |nsn|g?hthe V\Ili?"h
positive final velocity correspond to transmission, while the. S potential nergy IS franstormed INto KINEtc a € sofito

narrow downward spikes with negative final velocity on is accelerated. A simple energy-balance equation for this case

curves 1-3 correspond to the reflection “windows.” They aré’ eads

extremely sensitive to the initial velocity and difficult to ob- Es+|Eyl = EL, (8)

serve. The relative widths of the regions of transmission and . - ) )

capture depend on the initial velocity and can be quite difWhere Eg is the modified soliton energy. Neglecting the

ferent, but the period of repeat fof> 20 is nearly constant change of its shape and the small amount of energy taken

and depends weakly on the initial velocity. away by the shape mode and usigand(7), in the case of
Figures 3a)-3(c) illustrates the evolutionary patterns cor- Wide potential wellyN>L, E4=2d/L) we obtain

responding to transmission, trapping, and reflection, respec- v2+4ld|= U'i 9)

tively. In a trapped stat¢Fig. 3b)], the soliton oscillates ) N ) o

back and forth inside the well with zero average veIocityWhere v, is the modified soliton velocity inside the well.

(plotted as final on Fig. 2 In a reflection proces@ig. 3c)],  !nputting the values of andd from Fig. 2 into(9) yieldsv,
in the range 0.173-0.177. The spatial period of the corre-

sponding oscillations is; T=36.0—36.8. This is in excellent
agreement with the period of the scattering patterns observed
on Fig. 2. The values af, are slightly overestimated due to
the neglect of the shape oscillations in the energy balance
and the reduced soliton velocity near the boundaries of the
well. The broken period for narrow potential we(ld < 20)

is due to smaller interaction enerdy) in this case. The
above results show that the periodic patterns of trapping,
transmission, and reflection, which we observe in the scatter-
ing of NLS solitons from wide potential wells, are due to a
resonance with the shape oscillations excited at the bound-
ary.

We now address the problem of the nature of the shape
oscillations. The shape oscillations in Fig. 3 have a period
T=208 that corresponds to a frequenoy—27/T=-0.030.

It practically coincides with the internal frequency of the
unperturbed solitori3) wy=-0.0296. A closer inspection of
the residual oscillations of the escaping soliton shows, that
they decay with time a5/ Shape oscillations of perturbed
NLS solitons have been studied j85-33. Two main ap-
proaches have been employed for their descriptigrvaria-

FIG. 3. Typical scattering patterns fca) transmissionN=95), tional (or equivalen) and(ll) such based on the inverse scat-
(b) trapping (N=110), and(c) reflection (N=33) for v=0.05 and  tering method [33]. The first one reduces the soliton
d=-0.007. The arrows on the-axis mark the boundaries of the dynamics to a set of ordinary differential equations for the
defect region. pulse’s parameters, while the second describes the oscilla-

width of the well exhibits periodically repeating regions of
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tions as an interference of the soliton with the radiation ac- 005
companying the perturbed solution. The validity of the varia- \_/\
tional approach has been discussed[39]. It has been
argued that it is applicable only to solutions containing a
large number of solitons, while for one-soliton solutions it
can hardly be justified. In the latter case the variational ap-
proach yields oscillations with frequen¢®/m)w, [26,30,31

wp being the soliton frequencgB), with no radiation decay N

taken into account.

Dispersive perturbations of the NLS equation have been FIG. 4. Final soliton velocity; as a function ol for v=0.05
studied successfully by the inverse scattering methoend different depths of the potential well; curve 1 corresponds to
[25,27,28,3D The shape oscillations obtained by this d=-0.007 and curve 2- td=-0.008.
method for single-soliton solutions have a frequencygfit
emerges as a beat frequency between the soliton with frey;, <0. They are analogous to the three-bounce resonances
quencywo and dispersive waves with frequency[28].  gpserved in[5]. Due to the decay of the dispersive waves,
These modes and the correspon_cf/lgg shape oscillations &figese higher-order resonances are very sharp, extremely sen-
weakly decaying in a power law . The results of our gjiive to the initial velocity, and difficult to observe. It is

numerical simulations are in excellent agreement with thesﬁnportant to note that choosing a chain of 2000 sites and
based on th? Inverse scattering methpd for sollj[or]s with P€hoderate time scales, we have eliminated the possibility for
turbed amplitudes. A rigorous analytical description of our

| : h i f 7ah Shabat .~"a spurious interaction of the soliton with radiation revolving
results requires the solution of Zaharov-Shabat's equationg,nq the chain. This was proved in a direct way by a step-

[33] for a rectangular potential well, a problem that goesy, ten increase of the length of the chain, which does not
beyond the scope of the present paper. However, we ¢ ange the scattering pattern.

apply the results 0f25,27,28,3pby assuming that entering — an'increase of the depth of the well leads to wider regions

the well, the soliton turns out in a different media, with a trapping and narrower regions of transmissidfg. 4
wrong am%l!tu_de. I_t”:rleshto adjusf[”to_ a d'ﬁEff;F“ S?P:ape tr’]ycurve 2. The perturbation that the boundary induces is stron-
emitting radiation. The shape oscillations on Fig. 3 are the,q i this case, and a larger portion of the kinetic energy of
result of the interference of the soliton with this radiation. the soliton is transformed into radiation. A more exact reso-
The peno_du; scattering patterns on .F'g‘ 2 can b? ®Xhance condition is required at the second boundary for the
plained qual|tat|vely in the fpllpwmg way. Whgn the s_ollton escape of the soliton, which yields narrower regions of trans-
reaches the potential well, it interacts inelastically with themission The period of the scattering patterns in this case
sharp boundary and loses a small part of its Kinetic energyjoermined from Fig. 4 is 38 lattice sites, while the spatial

exciting dispersive wavegadiation. Their group velocity  noinq of the corresponding shape oscillations deduced from
matches the sqhton velocity, and they accompany it fo_r 9) is 38.6. Again we witness an excellent agreement be-
long time. The interference of these waves with the SOI'tortween the two
yields the observed oscillations of the soliton amplitude. The Contrarily. the change of the shape of the potential well
soliton crosses the well accompanied by the radiation, angl, rectangular to trapezoidal yields wider transmission re-
this configuration is weakly decaying. When the soliton

h h 4 bound diff ions and narrower regions of captfeg. 5). The potential
reaches the second boundary, different outcomes are PO g case is smoother, and the perturbation it induces is
sible, depending on the timing. In the nonresonant case,

he i it velocili liahtly ab he threshold f &Yeaker. Hence, a smaller portion of the kinetic energy is
the input initial velocities are slightly above the threshold for - <t rmed into radiation and the resonance condition at the

capture, the reduced kinetic energy of the soliton is not sufge 4 houndary is more relaxed. The period of the scatter-
ficient to overcome the potential barrier of the second boundl-ng patterns does not seem to change in this case

ary; the soliton is reflt_ected ffom ik ev_ent.ually 9etS “We also checked the dependence of the evolutionary pat-
“"."f]per?- I;owe(;/er, t.he |Eteract|on .O.f the Césg]:”a;mg.s‘)“t]?ntern on the initial position of the soliton with respect to the
with the boundary is phase-sensitive and if the time Orboundary of the defect region. For an initial soliton in the

which it crosses the potential well is commensurate with the . (3) and a fixed velocity=0.05 we obtain a threshold
period of the shape oscillations, then the inelastic interaction '

v
o
=
= &
E

with the second boundary may extinguish the shape oscilla- 0.05

tions, transferring their energy back into kinetic energy of the 0 W
translational motion and allowing the soliton to overcome 0.05 =9
the barrier and escape to infiniffransmissioin The higher s m
the initial velocity of the soliton is the wider the transmission 005 s=3
regions as seen from Fig. 2. The possible escape of a soliton . W
from a trapped state into a propagating state due to absorp- 5=0
tion of radiation has been predicted|[i22]. 0 50 100 150

In some rare cases the resonant condition for escape is
achieved after the soliton has crossed the defect region twice, FIG. 5. Final soliton velocityv; for v=0.05, d=-0.007 and
in both the forward and backward directions. This yields thetrapezoidal potential wells with different slogeis the extension of
observed narrow reflection spikes in Fig. 2 corresponding tehe slopg.
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initial distance of 15 lattice sites, above which the solitonnant case, due to loss of kinetic energy, the solitons get
passes through the defect region and below it gets trappettapped inside the well. Whenever the time for which the

This can be explained by radiation decay due to overlappingolitons cross the well is commensurate with the period of
of the initial soliton with the defect region. The chaotic be-the shape oscillations, the interaction with the second bound-
havior of the outcome as a function of the initial soliton ary may extinguish the dispersive modes, adding their energy
position obtained iM20] can be attributed to the different back to the kinetic energy of the solitons and allowing the

type of coupling between the soliton and the shape mode. latter to escape to infinitytransmission When the reso-

In summary, we have studied numerically the interactionnance condition is achieved after the solitons have crossed
of slow NLS solitons with extended inhomogeneities mod-the well twice—in both forward and backward direction—
eled by potential wells with steep boundaries and variableéhey can escape to negative infinity, which is seen as reflec-
widths. Increasing the width of the well, we have obtainedtion. The deexcitation of the shape oscillations at the poten-
periodically repeating regions of trapping, transmission, andial boundary observed in the present numerical simulations
reflection. The observed scattering patterns are explained by an interesting rare example of resonant absorption of dis-
an excitation and a following resonant deexcitation of shapgersive radiation by a soliton.
oscillations of the solitons at the boundaries of the well. The

frequency and dec_ay analysis of these osc_illations_shows that ACKNOWLEDGMENT
they are due to interference of the solitons with small-
amplitude dispersive modésadiatior), excited during their This work is supported in part by the National Science
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