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The interaction of nonlinear Schrödinger solitons with extended inhomogeneities, modeled by potential
wells with different shapes, is investigated numerically. For fixed initial velocities below the transmission
threshold, the scattering pattern as a function of the width of the well exhibits periodically repeating regions of
trapping, transmission, and reflection. The observed effects are associated with excitation and a following
resonant deexcitation(in the cases of escape) of shape oscillations of the solitons at the well boundaries. The
analysis of the oscillations indicates that they are due to interference of the solitons with emitted dispersive
waves.
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Self-localized nonlinear waves(solitons) have been stud-
ied in many areas of physics, including optics, solid state,
molecular, plasma, elementary particles, etc. Within inte-
grable models, solitons exhibit remarkable stability; they
propagate with constant velocities and shapes and emerge
from collisions unchanged except for phase and space shifts.
Real physical systems are usually described by nonintegrable
equations or such containing nonintegrable perturbations.
This leads to inelastic soliton interactions with a variety of
outcomes. As solitons provide an important mechanism for
energy and information transport in nonlinear systems, such
interactions have attracted considerable attention(see, i.e.,
Ref. [1] for a review of earlier works on soliton dynamics in
nearly integrable systems). Investigations have been focused
on collisions between solitons in nonintegrable models and
interactions of solitons with defects and inhomogeneities. In
both cases, due to the inelasticity of the interactions, solitons
can change their velocities, break into a number of localized
and dispersive waves, and/or be trapped into bound states. In
addition, fascinating resonance phenomena have been ob-
served.

Resonance effects in kink-antikink collisions have been
studied numerically in some nonintegrable equations includ-
ing f4, double and modified sine-Gordon, and others[2–4].
For initial velocities below the threshold for trapping, a se-
quence of narrow regions of reflection have been obtained.
These reflection windows have been explained by a “two-
bounce” resonance mechanism involving excitation of an in-
ternal shape mode during the first collision, temporal trap-
ping of the solitons due to loss of kinetic energy, deexcitation
of the shape mode during the second(backward) collision,
and escape of the kinks to infinity(reflection). The resonance
condition requires that the time between the two collisions is
commensurate with the period of the shape mode. Fine three-
and four-bounce resonance structures have also been ob-
tained[5]. Resonances in the collision of discrete NLS soli-
tons have been investigated in[6], and in the case of vector
NLS solitons-in[7].

Similar effects have been observed in the interactions of
solitons with localized impurities[8–10]. It has been shown
in particular that kinks can be reflected by an attractive im-
purity via a “two-bounce” resonance mechanism involving
the excitation and deexcitation of a localized impurity modes
[9], or impurity and a shape modes[10]. Scattering of non-

linear Schrödinger(NLS) solitons from point defects has
been studied in[11–15] involving a variety of nonresonant
outcomes.

A problem of considerable theoretical and practical im-
portance is the interaction of solitons with extended inhomo-
geneities[16–18]. Nonclassical behavior in the scattering of
topological solitons from potential wells has been obtained
in [19–23], including a rich outcome structures of trapping,
transmission and reflection as a function of the initial veloc-
ity. In the present work we investigate in detail the dynamics
of NLS solitons impinging on potential wells with variable
shapes. For fixed initial velocities slightly below the thresh-
old for transmission, the increase of the width of the well
yields alternating regions of capture and transmission, and,
occasionally, narrow reflection windows. The regions of
transmission, capture, and reflection follow a remarkable pe-
riodicity. The observed effects are explained by excitation
and a following resonant deexcitation of amplitude(shape)
oscillations of the soliton at the boundaries of the well.

The numerical simulations are based on the discrete non-
linear Schrödinger equation, which describes the dynamics
of nonlinear Bose-type excitations in atomic and molecular
chains. The potential wells are modeled byN consecutive
defects, which change the local energy
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In the continuum limit,(1) turns into a perturbed NLS
equation
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For dsxd;0, Eq.(2) possesses a fundamental bright soli-
ton solution
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whereL andv are the width and the velocity, respectively, of
the soliton.

It is known that fordn=0, Eq.(1) is a nonintegrable dis-
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crete version of the completely integrable continuum NLS
equation. For sufficiently wide solitons(compared to the lat-
tice constant), however, the discreteness-induced effects are
negligible and the solution(3) is stable on ideal discrete
lattices. We checked this numerically for solitons withL
ù4 and long time scales. So the solution(3) with L=5.75
was input as the initial condition in the simulations, placed
50 sites away from the defect region to avoid radiation decay
due to overlapping of the soliton’s tail with the potential
well. A predictor-corrector method[24] was employed, peri-
odic boundary conditions and chains much longer than the
defect region in order to eliminate boundary effects. The ac-
curacy of the calculations was controlled through the conser-
vation of the norm(number of particles), which was better
than 10−6 for the whole course of the simulations.

The total energy associated with the solution(3) on an
ideal lattice is

Es =E
−`

` SU ]a

]x
U2

− uau4Ddx=
v2

2L
−

2

3L3 ; Ek − Enl, s4d

where the first term describes the kinetic energy of the free
quasiparticles and the second term describes the nonlinear
interaction energy associated with the soliton. The scattering
pattern depends, in general, on the interplay between these
two energies and the energy of interaction with the defects
Ed

Ed =E
−`

`

dsxduau2dx. s5d

The effects studied below correspond to the case of “slow
solitons” with kinetic energy much smaller than the nonlin-
ear energyEk!Enl. The large nonlinear energy is necessary
in order to preserve the integrity of the soliton during the
scattering.

Scattering of NLS solitons from single-point defects has
been studied in detail in[11,12,14,15]. The corresponding
interaction energy when the soliton is on top of the defect is

Ed = dE
−`

`

dsxduau2dx=
d

L2 . s6d

When Ek@ uEdu, the solitons are not influenced significantly
by the defect, and forEk! uEdu, the solitons are reflected
even by an attractive defect. The possible outcomes in the
case of slow solitons and moderate defect strengthssEk

,uEdu d are transmission or capture. No resonance reflection
windows have been obtained.

A natural question arises as to what happens when the
defect spreads over several lattice sites. The energy of inter-
action withN consecutive defects when the soliton is in the
middle of the defect region is

Ed = dE
−N/2

N/2

uau2dx=
2d

L
tanhS N

2L
D . s7d

One can expect, that for a small number of defects,sN
øLd, the evolution should be similar to this of a soliton
interacting with a single defect withN-times greater strength.

This turns out to be true only for very small kinetic energies,
when the soliton always gets trapped. For higher energies
(Fig. 1), the delocalization of the defect can change the evo-
lution from capture to transmission[Fig. 1(c)]. It is worth
noting that the more localized the defect is, the stronger the
radiation accompanying the interaction.

The focus of the present study lies in the interaction of
NLS solitons with potential wells with variable width. The
input velocity and the depth of the potential were chosen
within ranges that permit a variety of scattering patterns.
First we studied rectangular potential wells modeled byN
consecutive defects with equal strengthd=−0.007. The
width of the wells was increased step by step to values much
larger than this of the soliton. The simulations show that for
initial velocities v,0.04 the solitons get trapped inside the
well, and for v.0.06 they pass through it and escape to
infinity for any values ofN. For initial velocities in the in-
termediate region, the scattering pattern as a function of the

FIG. 1. Interaction of a soliton(L=5.75,v=0.05) with several
consecutive impurities with a fixed summary strength.(a) N=1, d
=−0.035;(b) N=2, d=−0.0175; and(c) N=3, d=−0.0117.(a) and
(b) correspond to capture and(c) to transmission. The defects are
centered atn=0.
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width of the well exhibits periodically repeating regions of
transmission and capture, and occasionally, at the boundaries
between them, narrow reflection windows. This is shown in
Fig. 2 where we have plotted the final velocity of the soliton
as a function of the width of the well for different values of
the initial velocity. The horizontal parts with zero final ve-
locity correspond to the trapping regions. The regions with
positive final velocity correspond to transmission, while the
narrow downward spikes with negative final velocity on
curves 1–3 correspond to the reflection “windows.” They are
extremely sensitive to the initial velocity and difficult to ob-
serve. The relative widths of the regions of transmission and
capture depend on the initial velocity and can be quite dif-
ferent, but the period of repeat forN.20 is nearly constant
and depends weakly on the initial velocity.

Figures 3(a)–3(c) illustrates the evolutionary patterns cor-
responding to transmission, trapping, and reflection, respec-
tively. In a trapped state[Fig. 3(b)], the soliton oscillates
back and forth inside the well with zero average velocity
(plotted as final on Fig. 2). In a reflection process[Fig. 3(c)],

the soliton crosses the potential well, stays for a long time at
the second boundary, turns back, and leaves the defect region
through the first boundary. It is clearly seen that amplitude
(shape) oscillations are excited when the soliton enters the
potential well and persist while the soliton is inside the well.
Whenever the soliton leaves the defect region, the shape os-
cillations are almost totally extinguished. This suggests that
the shape oscillations are the cause of the periodic patterns
observed on Fig. 2, and we looked for a correlation between
the period of the oscillations and the width of the potential
well.

The scattering patterns shown on Fig. 2 have a period of
35 (curve 1) to 36(curve 4) lattice sites. The spatial period of
the shape oscillations is not so well defined due to the vari-
able velocity of the soliton inside the well. The temporal
period of the oscillations, however, can be determined with
great accuracy, and the detailed analysis of the numerical
data on Fig. 3 shows that it isT=208. An estimate of the
spatial period of the oscillations can be obtained from the
following considerations: when the soliton is inside the well,
its potential energy is transformed into kinetic and the soliton
is accelerated. A simple energy-balance equation for this case
reads

Es + uEdu = Es8, s8d

where Es8 is the modified soliton energy. Neglecting the
change of its shape and the small amount of energy taken
away by the shape mode and using(4) and(7), in the case of
wide potential wells(N@L, Ed=2d/L) we obtain

v2 + 4udu = v1
2, s9d

where v1 is the modified soliton velocity inside the well.
Inputting the values ofv andd from Fig. 2 into(9) yieldsv1
in the range 0.173–0.177. The spatial period of the corre-
sponding oscillations isv1T=36.0–36.8. This is in excellent
agreement with the period of the scattering patterns observed
on Fig. 2. The values ofv1 are slightly overestimated due to
the neglect of the shape oscillations in the energy balance
and the reduced soliton velocity near the boundaries of the
well. The broken period for narrow potential wellssN,20d
is due to smaller interaction energy(7) in this case. The
above results show that the periodic patterns of trapping,
transmission, and reflection, which we observe in the scatter-
ing of NLS solitons from wide potential wells, are due to a
resonance with the shape oscillations excited at the bound-
ary.

We now address the problem of the nature of the shape
oscillations. The shape oscillations in Fig. 3 have a period
T=208 that corresponds to a frequencyv=−2p /T=−0.030.
It practically coincides with the internal frequency of the
unperturbed soliton(3) v0=−0.0296. A closer inspection of
the residual oscillations of the escaping soliton shows, that
they decay with time ast−1/2. Shape oscillations of perturbed
NLS solitons have been studied in[25–32]. Two main ap-
proaches have been employed for their description:(i) varia-
tional (or equivalent) and(ii ) such based on the inverse scat-
tering method [33]. The first one reduces the soliton
dynamics to a set of ordinary differential equations for the
pulse’s parameters, while the second describes the oscilla-

FIG. 2. Final soliton velocityv f as a function of the numberN
of defects withd=−0.007 for different initial velocitiesv. Curves 1
to 4 correspond tov=0.0440, 0.0476, 0.0502, and 0.0580,
respectively.

FIG. 3. Typical scattering patterns for(a) transmissionsN=95d,
(b) trapping sN=110d, and (c) reflection sN=33d for v=0.05 and
d=−0.007. The arrows on then-axis mark the boundaries of the
defect region.
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tions as an interference of the soliton with the radiation ac-
companying the perturbed solution. The validity of the varia-
tional approach has been discussed in[30]. It has been
argued that it is applicable only to solutions containing a
large number of solitons, while for one-soliton solutions it
can hardly be justified. In the latter case the variational ap-
proach yields oscillations with frequencys2/pdv0 [26,30,31]
v0 being the soliton frequency(3), with no radiation decay
taken into account.

Dispersive perturbations of the NLS equation have been
studied successfully by the inverse scattering method
[25,27,28,30]. The shape oscillations obtained by this
method for single-soliton solutions have a frequency ofv0. It
emerges as a beat frequency between the soliton with fre-
quencyv0 and dispersive waves with frequency 2v0 [28].
These modes and the corresponding shape oscillations are
weakly decaying in a power lawt−1/2. The results of our
numerical simulations are in excellent agreement with these
based on the inverse scattering method for solitons with per-
turbed amplitudes. A rigorous analytical description of our
results requires the solution of Zaharov-Shabat’s equations
[33] for a rectangular potential well, a problem that goes
beyond the scope of the present paper. However, we can
apply the results of[25,27,28,30] by assuming that entering
the well, the soliton turns out in a different media, with a
wrong amplitude. It tries to adjust to a different shape by
emitting radiation. The shape oscillations on Fig. 3 are the
result of the interference of the soliton with this radiation.

The periodic scattering patterns on Fig. 2 can be ex-
plained qualitatively in the following way: when the soliton
reaches the potential well, it interacts inelastically with the
sharp boundary and loses a small part of its kinetic energy
exciting dispersive waves(radiation). Their group velocity
matches the soliton velocity, and they accompany it for a
long time. The interference of these waves with the soliton
yields the observed oscillations of the soliton amplitude. The
soliton crosses the well accompanied by the radiation, and
this configuration is weakly decaying. When the soliton
reaches the second boundary, different outcomes are pos-
sible, depending on the timing. In the nonresonant case, as
the input initial velocities are slightly above the threshold for
capture, the reduced kinetic energy of the soliton is not suf-
ficient to overcome the potential barrier of the second bound-
ary; the soliton is reflected from it and eventually gets
trapped. However, the interaction of the oscillating soliton
with the boundary is phase-sensitive and if the time for
which it crosses the potential well is commensurate with the
period of the shape oscillations, then the inelastic interaction
with the second boundary may extinguish the shape oscilla-
tions, transferring their energy back into kinetic energy of the
translational motion and allowing the soliton to overcome
the barrier and escape to infinity(transmission). The higher
the initial velocity of the soliton is the wider the transmission
regions as seen from Fig. 2. The possible escape of a soliton
from a trapped state into a propagating state due to absorp-
tion of radiation has been predicted in[22].

In some rare cases the resonant condition for escape is
achieved after the soliton has crossed the defect region twice,
in both the forward and backward directions. This yields the
observed narrow reflection spikes in Fig. 2 corresponding to

v f ,0. They are analogous to the three-bounce resonances
observed in[5]. Due to the decay of the dispersive waves,
these higher-order resonances are very sharp, extremely sen-
sitive to the initial velocity, and difficult to observe. It is
important to note that choosing a chain of 2000 sites and
moderate time scales, we have eliminated the possibility for
a spurious interaction of the soliton with radiation revolving
along the chain. This was proved in a direct way by a step-
by-step increase of the length of the chain, which does not
change the scattering pattern.

An increase of the depth of the well leads to wider regions
of trapping and narrower regions of transmission(Fig. 4,
curve 2). The perturbation that the boundary induces is stron-
ger in this case, and a larger portion of the kinetic energy of
the soliton is transformed into radiation. A more exact reso-
nance condition is required at the second boundary for the
escape of the soliton, which yields narrower regions of trans-
mission. The period of the scattering patterns in this case,
determined from Fig. 4 is 38 lattice sites, while the spatial
period of the corresponding shape oscillations deduced from
(9) is 38.6. Again we witness an excellent agreement be-
tween the two.

Contrarily, the change of the shape of the potential well
from rectangular to trapezoidal yields wider transmission re-
gions and narrower regions of capture(Fig. 5). The potential
in this case is smoother, and the perturbation it induces is
weaker. Hence, a smaller portion of the kinetic energy is
transformed into radiation and the resonance condition at the
second boundary is more relaxed. The period of the scatter-
ing patterns does not seem to change in this case.

We also checked the dependence of the evolutionary pat-
tern on the initial position of the soliton with respect to the
boundary of the defect region. For an initial soliton in the
form (3) and a fixed velocityv=0.05 we obtain a threshold

FIG. 4. Final soliton velocityv f as a function ofN for v=0.05
and different depths of the potential well; curve 1 corresponds to
d=−0.007 and curve 2- tod=−0.008.

FIG. 5. Final soliton velocityv f for v=0.05, d=−0.007 and
trapezoidal potential wells with different slope(s is the extension of
the slope).
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initial distance of 15 lattice sites, above which the soliton
passes through the defect region and below it gets trapped.
This can be explained by radiation decay due to overlapping
of the initial soliton with the defect region. The chaotic be-
havior of the outcome as a function of the initial soliton
position obtained in[20] can be attributed to the different
type of coupling between the soliton and the shape mode.

In summary, we have studied numerically the interaction
of slow NLS solitons with extended inhomogeneities mod-
eled by potential wells with steep boundaries and variable
widths. Increasing the width of the well, we have obtained
periodically repeating regions of trapping, transmission, and
reflection. The observed scattering patterns are explained by
an excitation and a following resonant deexcitation of shape
oscillations of the solitons at the boundaries of the well. The
frequency and decay analysis of these oscillations shows that
they are due to interference of the solitons with small-
amplitude dispersive modes(radiation), excited during their
inelastic interaction with the first boundary. In the nonreso-

nant case, due to loss of kinetic energy, the solitons get
trapped inside the well. Whenever the time for which the
solitons cross the well is commensurate with the period of
the shape oscillations, the interaction with the second bound-
ary may extinguish the dispersive modes, adding their energy
back to the kinetic energy of the solitons and allowing the
latter to escape to infinity(transmission). When the reso-
nance condition is achieved after the solitons have crossed
the well twice—in both forward and backward direction—
they can escape to negative infinity, which is seen as reflec-
tion. The deexcitation of the shape oscillations at the poten-
tial boundary observed in the present numerical simulations
is an interesting rare example of resonant absorption of dis-
persive radiation by a soliton.
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